Stationary Schrödinger equation in the semi-classical limit: numerical coupling of oscillatory and evanescent regions
نویسندگان
چکیده
This paper is concerned with a 1D Schrödinger scattering problem involving both oscillatory and evanescent regimes, separated by jump discontinuities in the potential function, to avoid "turning points". We derive a non-overlapping domain decomposition method to split the original problem into sub-problems on these regions, both for the continuous and afterwards for the discrete problem. Further, a hybrid WKB-based numerical method is designed for its efficient and accurate solution in the semi-classical limit: a WKB-marching method for the oscillatory regions and a FEM with WKB-basis functions in the evanescent regions. We provide a complete error analysis of this hybrid method and illustrate our convergence results by numerical tests.
منابع مشابه
A numerical study of the semi-classical limit of the focusing nonlinear Schrödinger equation
We study the solution of the focusing nonlinear Schrödinger equation in the semiclassical limit. Numerical solutions are presented for four different kinds of initial data, of which three are analytic and one is nonanalytic. We verify numerically the weak convergence of the oscillatory solution by examining the strong convergence of the spatial average of the solution. 2002 Elsevier Science B...
متن کاملMICROLOCAL ESTIMATES OF THE STATIONARY SCHRÖDINGER EQUATION IN SEMI-CLASSICAL LIMIT by
— We give a new proof for microlocal resolvent estimates for semi-classical Schrödinger operators, extending the known results to potentials with local singularity and to those depending on a parameter. These results are applied to the study of the stationary Schödinger equation with the approach of semi-classical measures. Under some weak regularity assumptions, we prove that the stationary Sc...
متن کاملWKB-Based Schemes for the Oscillatory 1D Schrödinger Equation in the Semiclassical Limit
An efficient and accurate numerical method is presented for the solution of highly oscillatory differential equations. While standard methods would require a very fine grid to resolve the oscillations, the presented approach uses first an analytic (second order) WKB-type transformation, which filters out the dominant oscillations. The resulting ODE is much smoother and can hence be discretized ...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کامل